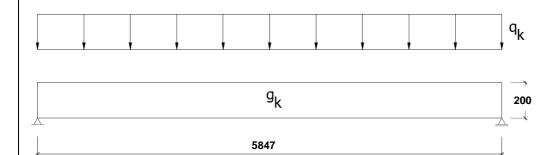


# Design of AAC roof slab according to EN 12602

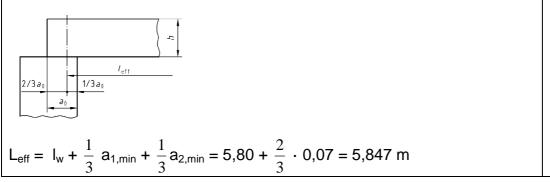

| 1.1 Issue<br>Design of a roof slabEN 12602, table 1<br>and 2<br>EN 12602, table 1<br>and 2<br>EN 10080Materials<br>Acc with a compressive strength AAC 3,5, density class 500, welded<br>steel reinforcement with tensile yield strength 500 MPa and ultimate<br>tensile strength 550 MPa.EN 12602, table 1<br>and 2<br>EN 100801.2 Material properties<br>Dry Density<br>Table 1: Density classes, dry densities in kg/m³EN 12602, 4.2.2.3Density<br>$\frac{400}{450}$ $\frac{450}{500}$ $\frac{550}{500}$ $\frac{650}{500}$ Compressive strength<br>AAC<br>$\frac{4AC}{450}$ $\frac{450}{500}$ $\frac{550}{500}$ $\frac{650}{500}$ Compressive strength<br>$\frac{2}{500}$ $\frac{400}{450}$ $\frac{450}{500}$ $\frac{550}{500}$ $\frac{650}{500}$ Compressive strength<br>$\frac{12}{6x}$ $2, 2, 5$ $\frac{3}{3, 5}$ $\frac{4}{4, 5}$ $\frac{5}{5, 0}$ Charles<br>Density<br>$\frac{12}{6x}$ $2, 2, 5$ $\frac{3}{3, 5}$ $\frac{4}{4, 0}$ $\frac{450}{4, 5}$ $\frac{5}{5, 0}$ Charles<br>Density Pm $\frac{12}{6x}$ $\frac{12}{2, 5}$ $\frac{3}{3, 5}$ $\frac{4}{4, 0}$ $\frac{4}{4, 5}$ $\frac{5}{5, 0}$ Charles<br>Density<br>$\frac{12}{6x}$ $\frac{12}{2, 5}$ $\frac{12}{3, 0}$ $\frac{12}{3, 5}$ $\frac{12}{4, 0}$ $\frac{12}{4, 0}$ Charles<br>Density Pm $\frac{12}{6x}$ $\frac{12}{6x}$ $\frac{12}{6x}$ $\frac{12}{6x}$ $\frac{12}{6x}$ Compressive strength<br>Charles<br>$\frac{12}{6x}$ $\frac{12}{2, 5}$ $\frac{12}{3, 0}$ $\frac{12}{3, 5}$ $\frac{12}{4, 0}$ $\frac{12}{4, 0}$ Compressive strength<br>Charles<br>$\frac{12}{6x}$ $\frac{12}{2, 5}$ $\frac{12}{3, 0}$ $\frac{12}{3, 0}$ $\frac{12}{4, 0}$ $\frac{12}{4, 0}$ Compressive str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Example 2                      | : Roof   | slab w   | /ith un | iform l   | load  |       |       |   |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|----------|---------|-----------|-------|-------|-------|---|-------------------|
| Design of a roof slab<br>Materials<br>AAC with a compressive strength AAC 3,5 , density class 500, welded<br>steel reinforcement with tensile yield strength 500 MPa and ultimate<br>tensile strength 550 MPa.<br>1.2 Material properties<br>Dry Density<br>Table 1: Density classes, dry densities in kg/m <sup>3</sup><br>Density  400  450  500  550  600  650  700<br>Cass  1.2  Compressive strength<br>Table 2: Compressive strength classes for AAC in MPa<br>$Strength  AAC  AAC  AAC  AAC  AAC  AAC \\ Class  2  2,5  3, 0  3,5  4, 0  4,5  5,0$<br>1.3 Type of element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          |          |         |           |       |       |       |   |                   |
| AAC with a compressive strength AAC 3,5 , density class 500, welded<br>steel reinforcement with tensile yield strength 500 MPa and ultimate<br>tensile strength 550 MPa.EN 12602, table 1<br>and 2<br>EN 10080 <b>1.2 Material properties</b><br>Dry Density<br>Table 1: Density classes, dry densities in kg/m³EN 12602, table 1<br>and 2<br>EN 10080Density<br>class400<br>450500<br>550600<br>650650<br>700EN 12602, 4.2.2.3Mean dry<br>density $\rho_m \leq 400 \leq 450 \leq 500 \leq 550 \leq 600 \geq 650 \leq 700$ EN 12602, 4.2.2.3EN 12602, 4.2.2.3Compressive strength<br>Table 2: Compressive strength classes for AAC in MPaStrength<br>ClassAAC<br>2<br>2,5AAC<br>3,0AAC<br>3,5AAC<br>4,0AAC<br>4,5AAC<br>5,0 <b>1.3 Type of element</b> EN 12602, 4.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          |          |         |           |       |       |       |   |                   |
| AAC with a compressive strength AAC 3,5 , density class 500, welded<br>steel reinforcement with tensile yield strength 500 MPa and ultimate<br>tensile strength 550 MPa.EN 12602, table 1<br>and 2<br>EN 10080 <b>1.2 Material properties</b><br>Dry Density<br>Table 1: Density classes, dry densities in kg/m³EN 12602, table 1<br>and 2<br>EN 10080Density<br>class400<br>450500<br>550600<br>650650<br>700EN 12602, 4.2.2.3Mean dry<br>density $\rho_m$ $\leq$ 400<br>$\leq$ 450<br>$\leq$ 500<br>$\leq$ 550<br>$\leq$ 600<br>$\leq$ 650<br>$\leq$ 650<br>$\leq$ 650<br>$\leq$ 650<br>$\leq$ 650<br>$\leq$ 600<br>$\leq$ 650<br>$\leq$ 600<br>$\leq$ 650<br>$\leq$ 700EN 12602, 4.2.2.3 <b>Compressive strength</b><br>Table 2: Compressive strength classes for AAC in MPaStrength<br>ClassAAC<br>2<br>2,5<br>3,0<br>3,5AAC<br>4,0<br>4,5AAC<br>5,0 <b>1.3 Type of element</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                              |          |          |         |           |       |       |       |   |                   |
| Dry Density       Table 1: Density classes, dry densities in kg/m <sup>3</sup> EN 12602, 4.2.2.3         Density       400       450       500       550       600       650       700         class       Image: Class density pm $400 \le 450 \ge 500 \ge 550 \ge 600 \ge 650$ $500 \ge 550 \ge 600 \ge 650$ $500 \le 650 \le 700$ EN 12602, 4.2.2.3         Compressive strength         Table 2: Compressive strength classes for AAC in MPa         EN 12602, 4.2.4         Strength       AAC       AAC       AAC       AAC       AAC       AAC         class       2       2,5       3       3,5       4       4,5       5       5         f <sub>ck</sub> 2,0       2,5       3,0       3,5       4,0       4,5       5,0       5       5         1.3 Type of element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAC with a c<br>steel reinforc | ement w  | ith tens | 0       | • •       |       |       | •     |   | and 2             |
| Table 1: Density classes, dry densities in kg/m³Density400450500550600650700classMean dry> 350> 400> 450> 500> 550> 600> 650density $\rho_m$ $\leq$ 400 $\leq$ 450 $\leq$ 500 $\leq$ 550 $\leq$ 600> 650 $\leq$ 700Compressive strengthTable 2: Compressive strength classes for AAC in MPaStrengthAACAACAACAACAACAACclass22,533,544,55f_{ck}2,02,53,03,54,04,55,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 Mater                      | ial prop | perties  | ;       |           |       |       |       |   |                   |
| $\begin{array}{ c c c c c c c } \hline Density & 400 & 450 & 500 & 550 & 600 & 650 & 700 \\ \hline class & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |          | coc dru  | donciti | na in ka/ | m3    |       |       |   | EN 12602, 4.2.2.3 |
| $\frac{\text{class}}{\text{Mean dry}} > 350 > 400 > 450 > 500 > 550 > 600 > 650 \\ \text{density } \rho_m \le 400 \le 450 \le 500 \le 550 \le 600 \le 650 \le 700 \\ \hline \textbf{Compressive strength} \\ \hline \textbf{Table 2: Compressive strength classes for AAC in MPa} \\ \hline \textbf{Strength}  AAC  AAC  AAC  AAC  AAC  AAC  AAC \\ \hline \textbf{class}  2  2,5  3  3,5  4  4,5  5 \\ \hline \textbf{f}_{ck}  2,0  2,5  3,0  3,5  4,0  4,5  5,0 \\ \hline \textbf{1.3 Type of element} \\ \hline \textbf{K}_{class} = \textbf{C}_{class} = $ |                                | 1        |          |         |           |       | 650   | 700   | 1 |                   |
| $\begin{array}{ c c c c c c c c } \hline density \rho_m & \leq 400 & \leq 450 & \leq 500 & \leq 550 & \leq 600 & \leq 650 & \leq 700 \\ \hline \hline \textbf{Compressive strength} \\ \hline Table 2: Compressive strength classes for AAC in MPa \\ \hline Strength & AAC \\ \hline class & 2 & 2,5 & 3 & 3,5 & 4 & 4,5 & 5 \\ \hline f_{ck} & 2,0 & 2,5 & 3,0 & 3,5 & 4,0 & 4,5 & 5,0 \\ \hline \hline \textbf{1.3 Type of element} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |          |          | 000     |           | 000   |       |       |   |                   |
| Compressive strengthTable 2: Compressive strength classes for AAC in MPaStrengthAACAACAACAACAACAACclass22,533,544,55 $f_{ck}$ 2,02,53,03,54,04,55,0 <b>1.3 Type of element</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                              |          |          |         |           |       |       |       |   |                   |
| Table 2: Compressive strength classes for AAC in MPaStrengthAACAACAACAACAACAACclass22,533,544,55 $f_{ck}$ 2,02,53,03,54,04,55,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | density $\rho_m$               | ≤ 400    | ≤ 450    | ≤ 500   | ≤ 550     | ≤ 600 | ≤ 650 | ≤ 700 |   |                   |
| 1.3 Type of element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | class                          | 2        | 2,5      | 3       | 3,5       | 4     | 4,5   | 5     |   |                   |
| Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3 Type                       |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Profile                        |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          | _        |         |           | 4     |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          | L        |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |          |         |           |       |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          | 人        |         |           | 4     |       |       |   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                              |          |          |         |           | I     |       |       |   |                   |

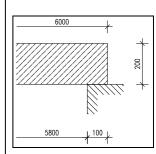


# 2 System and dimensions

# 2.1 System

Longitudinal section





### Minimum value for support length

| AAC component  | minimum requirement |
|----------------|---------------------|
| beams          | 60 mm               |
| floor elements | 40 mm               |
| roof elements  | 35 mm               |

### Recommended values

| AAC component  | support material | minimum     |
|----------------|------------------|-------------|
|                |                  | requirement |
| beams          | masonry          | 100 mm      |
| floor elements | masonry          | 70 mm       |
|                | steel            | 50 mm       |
|                | concrete         | 50 mm       |
| roof elements  | masonry          | 70 mm       |
|                | steel            | 50 mm       |
|                | concrete         | 50 mm       |
|                | wood             | 50 mm       |
| wall elements  | steel            | 50 mm       |
|                | concrete         | 50 mm       |





### EN 12602, A.11



The component has to be designed for all load cases also for impacts resulting from transport.

The relevant load case for that is the transport with a fork lifter and for the weak axis.

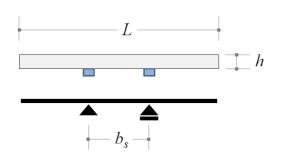



Figure 1: Transport situation fork lift truck

Assumption for distance forks:  $b_s = 1,00 \text{ m}$ 

$$L_{\text{cantilever}} = \frac{(L-bs)}{2} = \frac{(6,00-1,00)}{2} = 2,50 \text{ m}$$

# 2.2 Cross section

h = 200 mm b = 625 mm

# 2.3 Concrete cover and effective depth

 $c_1 = 35 \text{ mm}$  $c_2 = 35 \text{ mm}$ 

Assumption for fire resistance class: REI 90

With a granted diameter of 6 mm the effective depth is:

 $d = 200 \text{ mm} - 35 - \frac{6}{2} = 162 \text{ mm}$ 



|                                                                                                     |                                                        | <b>OCCOC</b>                      |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|
| 3 Loads                                                                                             |                                                        |                                   |
| Self-weight of AAC element:<br>with 35 kg / m <sup>3</sup> steel and 6 M-% moisture                 | EN 12602, 4.2.2.4<br>(1)                               |                                   |
| Load                                                                                                |                                                        |                                   |
| <ul> <li>Permanent loads</li> <li>water proofing</li> <li>AAC (g = 5,7 kN/m<sup>3</sup>)</li> </ul> | 0,20 kN/m <sup>2</sup><br><u>1,14 kN/m<sup>2</sup></u> | Thickness of slab = 0,20 m        |
| permanent load, $g_k =$                                                                             | 1,34 kN/m <sup>2</sup>                                 |                                   |
| Variable loads, q <sub>K</sub> =                                                                    | 0,75 kN/m²                                             |                                   |
| Transport weight of AAC element:<br>ρ <sub>trans</sub> = 7,05 kN/m³                                 |                                                        | EN 12602, 4.2.2.4<br>(3)          |
| 4 Internal forces                                                                                   | a component with a width                               | of                                |
| Internal forces are determined for a single 625 mm.                                                 | e component with a width                               |                                   |
| 4.1 Internal forces for characteri                                                                  |                                                        |                                   |
| $G_{d1} = \gamma_G \cdot b \cdot g_k = 1,35 \cdot 0,625 \cdot 1,34 = 1,$                            | 13 kN/m                                                | Load combinations acc. to EN 1990 |
| $Q_{d1} = \gamma_Q \cdot b \cdot q_k = 1,50 \cdot 0,625 \cdot 0,75 = 0,75$                          |                                                        |                                   |
| $V_{Sd1} = \frac{(G_{d1} + Q_{d1}) \cdot l_{eff}}{2} = \frac{(1,13 + 0,70)}{2} \cdot 5,8$           |                                                        |                                   |
| $M_{Sd1} = \frac{(G_{d1} + Q_{d1}) \cdot l_{eff}^{2}}{8} = \frac{1,83 \cdot 5,847^{2}}{8} = 7,8$    |                                                        |                                   |
| 4.2 Internal forces for frequent of                                                                 |                                                        |                                   |
| $G_{d2} = b \cdot g_k = 0,625 \cdot 1,34 = 0,84 \text{ kN/m}$                                       |                                                        |                                   |
| $Q_{d2} = \psi_1 \cdot b \cdot q_k = 0,2 \cdot 0,625 \cdot 0,75 = 0,0$                              | ψ1=0,2                                                 |                                   |
| $V_{Sd2} = \frac{(G_{d2} + Q_{d2})}{2} \cdot I_{eff} = \frac{0,84 + 0,09}{2} \cdot 5,84$            |                                                        |                                   |
|                                                                                                     |                                                        |                                   |



$$M_{Sd2} = \frac{(G_{d2} + Q_{d2}) \cdot l_{d7}^{2}}{8} = \frac{0.93 \cdot 5.847^{2}}{8} = 3.97 \text{ kNm}$$
**4.3 Internal forces for quasi-permanent combinations**

$$G_{d3} = b \cdot g_{k} = 0.625 \cdot 1.34 = 0.84 \text{ kN/m}$$

$$Q_{d3} = \psi_{2} \cdot b \cdot q_{k} = 0 \cdot 0.625 \cdot 2.00 = 0 \text{ kN/m}$$

$$\psi_{2}=0$$

$$V_{Sd3} = \frac{(G_{d3} + Q_{d3})}{2} \cdot l_{eff} = \frac{0.84 + 0}{2} \cdot 5.847 = 2.46 \text{ kN}$$

$$M_{Sd3} = \frac{(G_{d3} + Q_{d3}) \cdot l_{eff}}{8} = \frac{0.84 \cdot 5.847^{2}}{8} = 3.59 \text{ kNm}$$
**4.4 Internal forces for transport situations**

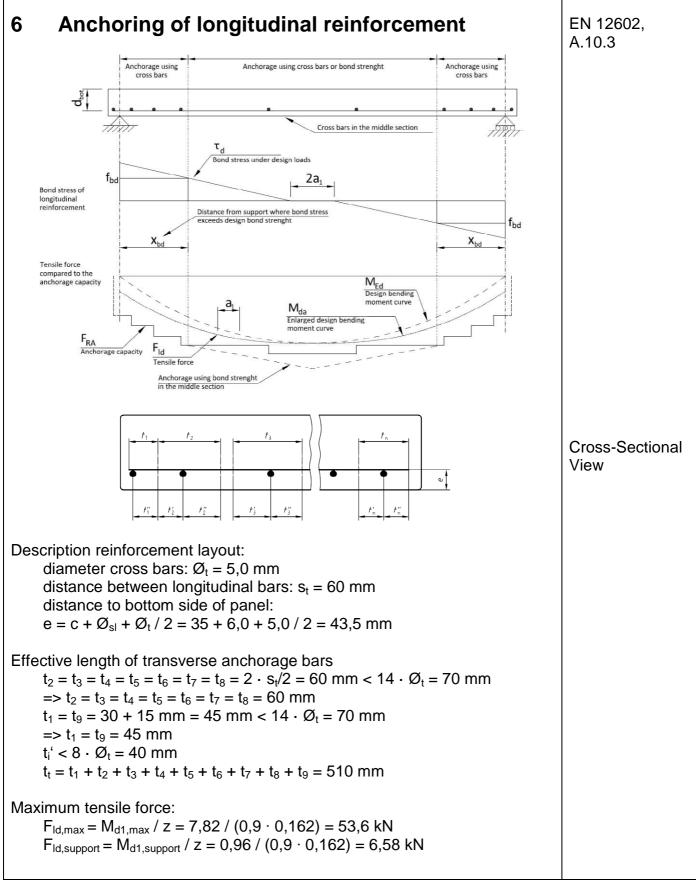
$$G_{T} = \gamma_{G} \cdot b \cdot g_{T} = 1.35 \cdot 0.625 \cdot 7.05 \cdot 0.20 = 1.19 \text{ kN/m}$$

$$V_{T} = \gamma_{T} \cdot \frac{G_{T}}{2} \cdot L = 1.3 \cdot 1.19 \cdot 2.50 = 3.87 \text{ kN}$$

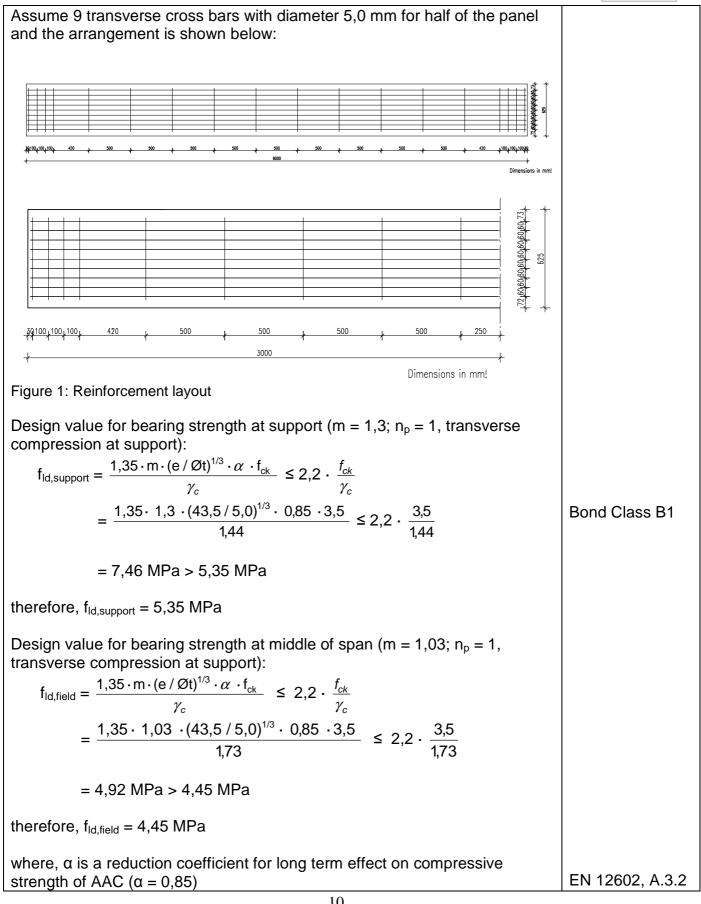
$$M_{T} = \frac{\gamma_{T} \cdot G_{T} \cdot L^{2} \text{ candiever}}{2} = \frac{13 \cdot 1.19 \cdot 2.5^{2}}{2} = 4.83 \text{ kNm}$$
where  $\mathcal{T}_{T} = 1.3$  (assumption for dynamic coefficient due to manipulation of components, when indicated consideration of national regulations)



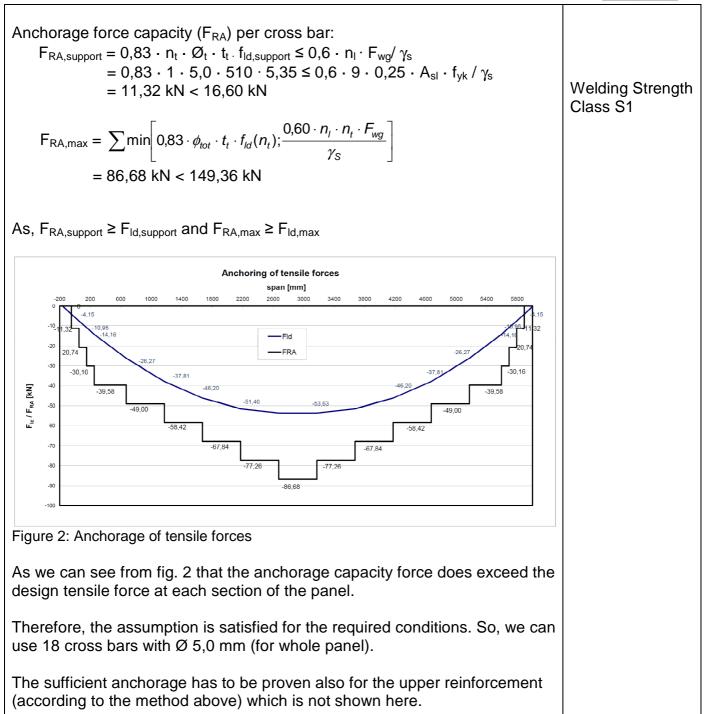
|                                                                                                                                                                          |                                                                                                          | caava                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|
| 5 Design                                                                                                                                                                 |                                                                                                          |                           |
| 5.1 Material properties                                                                                                                                                  |                                                                                                          |                           |
| Characteristic compressive stre $f_{ck} = 3,5$ MPa = 3500 kN/m <sup>2</sup>                                                                                              | ngth,                                                                                                    | EN 12602, 4.2.4           |
| Basic Shear Strength,<br>$\tau_{\text{Rd}} = \frac{0,063 \cdot f_{ck}^{0.5}}{\gamma} = 0,063 \cdot 3,5^{0.5}$                                                            | / 1,73 = 0,0681 MPa                                                                                      | EN12602, A.4.1.2<br>(A.6) |
| Mean Modulus of Elasticity of A<br>$E_{cm} = 5 \cdot (\rho_m - 150) = 1750 \text{ N/m}$                                                                                  |                                                                                                          | EN 12602, 4.2.7           |
| Characteristic yield strength of s<br>$f_{yk} = 500 \text{ MPa} = 500 \text{ N/mm}^2$                                                                                    | steel,                                                                                                   | EN 12602, 4.3.1           |
| 5.2 Design for bending                                                                                                                                                   |                                                                                                          |                           |
| Finding equilibrium of stress / st                                                                                                                                       | train:                                                                                                   |                           |
| $1000 \cdot m_{d} = \frac{1000 \cdot M_{Sd1} \cdot \gamma_{c}}{\alpha \cdot f_{ck} \cdot A_{c} \cdot d} = \frac{1000 \cdot M_{Sd1} \cdot \gamma_{c}}{0.85}$              | $\frac{7,82 \cdot 1,44}{5 \cdot 3,5 \cdot 0,625 \cdot 0,162 \cdot 0,162} = 230,8$                        |                           |
| Reading from design table (see                                                                                                                                           | Annex A):                                                                                                |                           |
| $\epsilon_{c} = 3,00 \%$<br>k <sub>x</sub> = 0,406                                                                                                                       | $\epsilon_{s} = 4,29 \%$<br>1000· $\varpi = 270,9$                                                       |                           |
| $A_{s} = A_{c} \cdot \varpi \cdot \frac{\alpha \cdot f_{ck} \cdot \gamma_{s}}{\gamma_{c} \cdot f_{yk}} = \frac{0,625 \cdot 0,}{10}$                                      | $\frac{162 \cdot 270,9}{000} \cdot \frac{0,85 \cdot 3,5 \cdot 1,15}{1,44 \cdot 500} = 1,30 \text{ cm}^2$ |                           |
| chosen: 9 Ø 6,0 mm (A <sub>sl</sub> = 2,54                                                                                                                               | cm²)                                                                                                     |                           |
| Upper reinforcement:                                                                                                                                                     |                                                                                                          |                           |
| $1000 \cdot m_{d} = \frac{1000 \cdot M_{T} \cdot \gamma_{c}}{\alpha \cdot f_{ck} \cdot A_{c} \cdot d} = \frac{1000 \cdot M_{T} \cdot \gamma_{c}}{0.85 \cdot \gamma_{c}}$ | $\frac{4,83 \cdot 1,44}{3,5 \cdot 0,625 \cdot 0,162 \cdot 0,162} = 142,5$                                |                           |
| Reading from design table (see                                                                                                                                           | Annex A):                                                                                                |                           |
| $\epsilon_{c} = 3,00 \%$<br>k <sub>x</sub> = 0,233                                                                                                                       | $\epsilon_{\rm s} = 9,85 \%$<br>1000· $\varpi = 155,7$                                                   |                           |
|                                                                                                                                                                          | 1000 0 - 100,1                                                                                           |                           |




| $\alpha \cdot f_{ab} \cdot \gamma_{c} = 0.625 \cdot 0.162 \cdot 155.7  0.85 \cdot 3.5 \cdot 1.15  c = 10$                                                                                                                          |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| $A_{s} = A_{c} \cdot \varpi \cdot \frac{\alpha \cdot f_{ck} \cdot \gamma_{s}}{\gamma_{c} \cdot f_{yk}} = \frac{0,625 \cdot 0,162 \cdot 155,7}{1000} \cdot \frac{0,85 \cdot 3,5 \cdot 1,15}{1,44 \cdot 500} = 0,749 \text{ cm}^{2}$ |                 |
| chosen: 5 Ø 6,0 mm (A <sub>sl</sub> = 1,41 cm <sup>2</sup> )                                                                                                                                                                       |                 |
| 5.3 Minimum reinforcement                                                                                                                                                                                                          |                 |
| $f_{cflm} = 0,27 \cdot 3,5 = 0,945 \text{ MPa}$                                                                                                                                                                                    | EN 12602, A.3.4 |
| $A_{ct} = b \cdot \frac{h}{2} = 62.5 \cdot 10.0 = 625 \text{ cm}^2$                                                                                                                                                                | (A.3)           |
| $A_{s,min} = k \cdot A_{ct} \cdot f_{cflm} / f_{yk} = 0.4 \cdot 625 \cdot 0.945 / 500 = 0.47 \text{ cm}^2$                                                                                                                         |                 |
| $A_{s,min} = 0,47 \text{ cm}^2 < 2,54 \text{ cm}^2$                                                                                                                                                                                |                 |
| 5.4 Design for shear force                                                                                                                                                                                                         | EN 12602, A.4   |
| Determination of reinforcement ratio:                                                                                                                                                                                              |                 |
| $\rho_{\rm I} = \frac{A_{s,exis}}{(b \cdot d)} = \frac{2,54}{62,5 \cdot 16,2} = 0,0025 < 0,005$                                                                                                                                    |                 |
| Minimum design value of shear force                                                                                                                                                                                                |                 |
| V <sub>Rd1</sub> ≥ 0,5 $\cdot \frac{f_{ctk;0,05}}{\gamma_c} \cdot b_w \cdot d = 0,5 \cdot 0,10 \cdot 3500 / 1,73 \cdot 0,625 \cdot 0,162$<br>= 10,24 kN                                                                            | EN 12602, (A.6) |
| Design value of shear force:                                                                                                                                                                                                       |                 |
| $V_{Rd1} = \tau_{Rd} \cdot (1 - 0.83 \cdot d) \cdot (1 + 240 \cdot \rho_I) \cdot b_w \cdot d$                                                                                                                                      |                 |
| $= 68,1 \cdot (1 - 0,83 \cdot 0,162) \cdot (1 + 240 \cdot 0,0025) \cdot 0,625 \cdot 0,162$                                                                                                                                         |                 |
| = 9,55 kN                                                                                                                                                                                                                          |                 |
| Higher value is determinant (critical) : $V_{Rd1} = 12,29 \text{ kN}$                                                                                                                                                              |                 |
| $V_{Rd1} = 10,24 \text{ kN} > 5,35 = V_{Sd1}$                                                                                                                                                                                      |                 |
| Therefore, no shear reinforcement is required.                                                                                                                                                                                     |                 |
|                                                                                                                                                                                                                                    |                 |
|                                                                                                                                                                                                                                    |                 |
|                                                                                                                                                                                                                                    |                 |
|                                                                                                                                                                                                                                    |                 |




| <b>5.5</b> Spacing of Longitudinal Bars                                                                                                                                                          | EN 12602, |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Centre distance between bars : 50 mm $\leq s_{11} \leq 2$ d                                                                                                                                      | 5.2.7.2.2 |
| Therefore, we consider the longitudinal bars at a distance of 60 mm centre to centre as per the limits.<br>And the distance of longitudinal bars from the panel surface is supposed to be 35 mm. |           |
















|                                                                                                                                                                                                                            | La construction de la constructi |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 Serviceability Limit States                                                                                                                                                                                              | EN 12602, A.9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cracking moment, $M_{cr} = (b \cdot h^2 / 6) \cdot f_{cflm}$<br>= (0,625 \cdot 0,20 <sup>2</sup> / 6) \cdot (0,27 \cdot 0,8 \cdot 3,5)<br>= 3,15 kNm                                                                       | EN 12602,<br>A.9.4.3 and 4.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| where, $f_{cflm}$ is the flexural strength of AAC (= 0,27 $\cdot$ 0,8 $\cdot$ $f_{ck}$ )                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| As, $M_f > M_{cr}$ , therefore, the slab is considered to behave in a manner intermediate between uncracked and cracked condition.                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.1 Deflection under uncracked condition                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>7.1.1 Short-term deflection</b><br>Ratio of the modulus of elasticity of reinforcing steel and AAC:<br>$n = \frac{E_s}{E_{cm}} \approx \frac{200000  N/mm^2}{1750  N/mm^2} = 114,3$                                     | EN 12602,<br>(A.42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Moment of area of AAC and reinforcement:<br>$l_{c,brutto} = \frac{b \cdot h^3}{12} + n \cdot (9 \cdot \pi \cdot (\emptyset_1/2)^4 / 4 + 5 \cdot \pi \cdot (\emptyset_2/2)^4 / 4) = 41676,85 \text{ cm}^4$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The upper longitudinal reinforcement can be fully taken into account to determine the moment of inertia. The position of the centre of gravity of the reinforcement layer is supposed to be 3,8 cm from the panel surface. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parts of moment of inertia from consideration of the reinforcement:<br>$A_{s1} = 2,54 \text{ cm}^2$<br>$A_{s2} = 1,41 \text{ cm}^2$                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Centre of gravity,                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $y_{\rm S} = \frac{b \cdot h \cdot h/2 + n \cdot (A_{\rm s1} \cdot y_{\rm s1} + A_{\rm s2} \cdot y_{\rm s2})}{b \cdot h + n \cdot (A_{\rm s1} + A_{\rm s2})} = \frac{16214.1}{1701.5} = 9,53 \text{ cm}$                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| where, $y_{s1}$ and $y_{s2}$ are the distances from the centre of the reinforcement steel to the bottom surface of the slab.                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $I_{ST} = b \cdot h \cdot (\frac{h}{2} - y_s)^2 + n \cdot (A_{s1} \cdot (y_{s1} - y_s)^2 + A_{s2} \cdot (y_{s2} - y_s)^2)$                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= 1250 \cdot (10,0 - 9,53)^2 + 114,3 \cdot (2,54 \cdot (3,8 - 9,53)^2 + 1,41 \cdot (16,2 - 9,53)^2)$                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| = $16978,20 cm^4$<br>$E_{cm} \cdot I_{ci} = E_{cm} \cdot (I_{C;BRUTTO} + I_{st}) = 1750 \cdot (41676,8 + 16978,2) \cdot 10^{-8}$                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= 1,026 MNm^{2}$                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Deflection due to load combination 2 (frequent action combinations):  

$$y_{w} = \frac{5}{48} \cdot \frac{M_{Sd2} \cdot L_{w}}{E_{cm}}^{2} = \frac{5}{48} \cdot \frac{0.00397 \cdot 5.847^{2}}{1026} = 0.0138m$$

$$y_{w} = 0.0138m = 1.38cm < 2.34cm = \frac{L_{w}}{250}$$
General note:  
The limit value for the maximum deflection may be found in a national application  
document. The recommended value for the calculated deflection of roof and floor  
components subjected to quasi-permanent loads is (according to EN 12602)  
span/250.  
**7.1.2 Long-term deflection**  
For long term deflection an effective modulus of elasticity,  

$$E_{c,eff} = E_{cm} / (1 + \varphi)$$
is used.  
Therefore,  $E_{c,eff} = 875 \text{ N/mm}^{2}$   
and  

$$n = \frac{E_{s}}{E_{c,eff}} = \frac{200000}{875 \text{ N/mm}^{2}} = 228.6$$
Moment of area of AAC and reinforcement,  

$$l_{s,brain} = \frac{b \cdot h^{2}}{12} + n \cdot (9 \cdot \pi \cdot (a_{s1}/2)^{4} + 4 \cdot 5 \cdot \pi \cdot (a_{2}/2)^{4} / 4) = 41687.02 \text{ cm}^{4}$$
Centre of gravity,  

$$y_{S} = \frac{b \cdot h \cdot h/2 + n \cdot (A_{s1} \cdot y_{s1} + A_{s2} \cdot y_{s2})}{b \cdot h + n \cdot (A_{s1} + A_{s2})} = \frac{19928.1}{2153.0} = 9.26 \text{ cm}$$
Moment of inertia for reinforcement,  

$$l_{ST} = b \cdot h \cdot (\frac{h}{2} - y_{s})^{2} + n \cdot (A_{s1} \cdot (y_{s1} - y_{s})^{2} + A_{s2} \cdot (y_{s2} - y_{s})^{2})$$

$$= 1250 \cdot (10 - 9.26)^{2} + 228.6 \cdot (254 \cdot (38 - 9.26)^{2} + 141 \cdot (16.2 - 9.26)^{2})$$

$$= 33518.81cm^{4}$$



|                                                                                                                                                                                    | caava     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $E_{c,eff} \cdot I_{ci} = E_{c,eff} \cdot (I_{C;BRUTTO} + I_{st}) = 875 \cdot (41687,0 + 33518,8) \cdot 10^{-8}$ $= 0,658MNm^{2}$                                                  |           |
| Deflection due to load combination 3 (quasi-permanent combinations):                                                                                                               |           |
| $y_{\infty} = \frac{5}{48} \cdot \frac{M_{\text{Sd3}} \cdot L_{\text{eff}}^2}{E_{c,\text{eff}} \cdot I_{ci}} = \frac{5}{48} \cdot \frac{0,00359 \cdot 5,847^2}{0,658} = 0,0194  m$ |           |
| $y_{\infty} = 0,0194m = 1,94cm < 2,34cm = \frac{L_{eff}}{250}$                                                                                                                     |           |
| 7.2 Deflection under cracked condition                                                                                                                                             |           |
| 7.2.1 Short-term deflection                                                                                                                                                        |           |
| The ratio of the modulus of elasticity of reinforcing steel and AAC:                                                                                                               |           |
| $n = \frac{E_s}{E_{cm}} \approx \frac{200000 \text{ N/mm}^2}{1750 \text{ N/mm}^2} = 114,3$                                                                                         | EN 12602, |
| $E_{cm}$ 1750 N/mm <sup>2</sup>                                                                                                                                                    | (A.42)    |
| In this case, we consider only compression zone of AAC and reinforcement for the calculation of moment of inertia. Therefore, first we will find the x-equilibrium                 |           |
| x = $\frac{\sqrt{1+4 \cdot d \cdot A} - 1}{2 \cdot A}$ = 8,47 cm                                                                                                                   |           |
| where, x is height of compression zone from top surface of panel<br>d is effective height,<br>$A = b \cdot E_{cm} / (2 \cdot A_{s1} \cdot E_S)$                                    |           |
| The upper longitudinal reinforcement can be fully taken into account to determine the moment of inertia.                                                                           |           |
| Moment of area of compression zone AAC and reinforcements,                                                                                                                         |           |
| $l_{c,brutto} = \frac{b \cdot x^3}{12} + n \cdot (9 \cdot \pi \cdot (\emptyset_1/2)^4 / 4 + 5 \cdot \pi \cdot (\emptyset_2/2)^4 / 4) = 3175,00 \text{ cm}^4$                       |           |
| The position of the centre of gravity of the reinforcement layer is supposed to be 3,8 cm from the panel surface.                                                                  |           |
| Parts of moment of inertia from consideration of the reinforcement:                                                                                                                |           |
| $A_{s1} = 2,54 \text{ cm}^2$<br>$A_{s2} = 1,41 \text{ cm}^2$                                                                                                                       |           |
|                                                                                                                                                                                    |           |



Centre of gravity is:

$$y_{s} = \frac{b \cdot x \cdot (h - x/2) + n \cdot (A_{s1} \cdot y_{s1} + A_{s2} \cdot y_{s2})}{b \cdot x + n \cdot (A_{s1} + A_{s2})} = \frac{12059,7}{980,9} = 12,29 \text{ cm}$$

where,  $y_{s1}$  and  $y_{s2}$  are the distances from the centre of the reinforcement steel to the bottom surface of the slab

$$I_{ST} = b \cdot x \cdot (h - x/2 - y_s)^2 + n \cdot (A_{s1} \cdot (y_{s1} - y_s)^2 + A_{s2} \cdot (y_{s2} - y_s)^2)$$
  
= 29782,85cm<sup>4</sup>  
$$E_{cm} \cdot I_{ci} = E_{cm} \cdot (I_{C;BRUTTO} + I_{st}) = 1750 \cdot (3175,0 + 29782,8) \cdot 10^{-8}$$
  
$$E_{cm} \cdot I_{ci} = 0,577 MNm^2$$

Deflection due to load combination 2 (frequent action combinations):

$$y_{el} = \frac{5}{48} \cdot \frac{M_{Sd2} \cdot L_{eff}^{2}}{E_{cm} \cdot I_{ci}} = \frac{5}{48} \cdot \frac{0,00397 \cdot 5,847^{2}}{0,577} = 0,0245m$$
$$y_{el} = 0,0245m = 2,45cm > 2,34cm = \frac{L_{eff}}{250}$$

# 7.2.2 Long term deflection

For long term deflection an effective modulus of elasticity is used,

therefore,

$$E_{c,eff} = E_{cm} / (1 + \phi)$$
$$E_{c,eff} = 875 \text{ N} / \text{mm}^2$$

and

$$n = \frac{E_s}{E_{c,eff}} \approx \frac{200000 \text{ N/mm}^2}{875 \text{ N/mm}^2} = 228,6$$

Moment of area of AAC and reinforcement,

$$l_{c,brutto} = \frac{b \cdot x^3}{12} + n \cdot (9 \cdot \pi \cdot (\emptyset_1/2)^4 / 4 + 5 \cdot \pi \cdot (\emptyset_2/2)^4 / 4) = 3185,18 \text{ cm}^4$$

Centre of gravity,

$$y_{s} = \frac{b \cdot x \cdot (h - x/2) + n \cdot (A_{s1} \cdot y_{s1} + A_{s2} \cdot y_{s2})}{b \cdot x + n \cdot (A_{s1} + A_{s2})} = \frac{15773,7}{1432,3} = 11,01 \text{ cm}$$

Moment of inertia for reinforcement,



$$I_{ST} = b \cdot x \cdot (h - \frac{x}{2} - y_s)^2 + h \cdot (A_{s1} \cdot (y_{s1} - y_s)^2 + A_{s2} \cdot (y_{s2} - y_s)^2)$$

$$= 50835.84cm^4$$

$$E_{o,att} \cdot I_{at} = E_{o,att} \cdot (I_{O,BRUTTO} + I_{at}) = 875 \cdot (3185.2 + 50835.6) \cdot 10^{-8}$$

$$= 0.473MNm^2$$
Deflection due to load combination 3 (quasi-permanent combinations):  

$$y_{-} = \frac{5}{48} \cdot \frac{M_{so1} \cdot L_{ext}^2}{E_{o,att} \cdot I_{ett}^2} = \frac{5}{48} \cdot \frac{0.00359 \cdot 5.847^2}{0.473} = 0.0270m$$

$$y_{-} = 0.0270m = 2.70cm > 2.34cm = \frac{L_{att}}{250}$$
**7.3 Combination of deflection**  
The short term deflection  
The short term deflection for the intermediate situation (cracked/uncracked)  
due to frequent loads is:  

$$k \cdot p_{11} + (1-k) \cdot p_1 = 0.496 \cdot 2.45 + (1-0.496) \cdot 1.38 = 1.91cm$$
where  $k = 1 - 0.8 \cdot (M_{ot} / M_{ot2})^2 = 1 - 0.8 \cdot (3.15/3.97)^2 = 0.496$ 

$$M_{o;:} cracking moment$$

$$M_{saz}^2 bending moment for frequent combination of loading
$$p_{11} : short-term deflection for uncracked condition$$

$$y_{ot} = 1.91cm < 2.34cm = \frac{L_{att}}{250}$$
EN 12602 (A.44)$$

I



# **7.3.2 Long-term deflection**<br/>By considering an effective modulus of elasticity ( $E_{c,eff}$ ) and quasi-permanent<br/>combination of loading is: $k \cdot p_{II} + (1-k) \cdot p_I = 0,496 \cdot 2,70 + (1-0,496) \cdot 1,94 = 2,32cm$ <br/>where $k = 1 - 0,8 \cdot (M_{cr} / M_{sd2})^2 = 1 - 0,8 \cdot (3,15/3,97)^2 = 0,496$ <br/>M<sub>cr</sub>: cracking moment<br/>M<sub>sd2</sub>: bending moment for frequent combination of loading<br/> $p_{II}$ : long-term deflection for cracked condition<br/> $p_{II}$ : long-term deflection for uncracked condition $y_{\infty} = 2,32cm < 2,34cm = \frac{L_{eff}}{250}$



### Annex A

| 1000-m <sub>d</sub> =   | 1000 · M <sub>Sd1</sub> · γ <sub>c</sub> |
|-------------------------|------------------------------------------|
| 1000-111 <sub>d</sub> = | $\alpha \cdot f_{ck} \cdot A_c \cdot d$  |

 $A_{s} = A_{c} \cdot \overline{\omega} \cdot \frac{\alpha \cdot f_{ck} \cdot \gamma_{S}}{\gamma_{c} \cdot f_{yk}}$ 

d A<sub>c</sub> A<sub>s</sub> f<sub>ck</sub> f<sub>yk</sub>  $\gamma_{c,ductile}$ γs

 $M_{\text{sd1}}$ 

bending moment under characteristic combination of loading (respecting transport load situations) effective depth of component cross section of AAC,  $A_c = b \cdot d$ cross sectional area of reinforcement characteristic compressive strength of AAC encoded at a strength of characteristic strength of and a strength of the characteristic compressive strength of AAC characteristic yield strength of reinforcing steel partial safety factor of AAC for ductile failure partial safety factor for reinforcing steel

| $\varepsilon_{\rm c}$ $\varepsilon_{\rm s}$ |       | k <sub>x</sub> | k <sub>z</sub> | 1000 · m <sub>d</sub> | 1000<br>stainless steel,  | ∙ æ<br>steel,             |
|---------------------------------------------|-------|----------------|----------------|-----------------------|---------------------------|---------------------------|
| [‰]                                         | [‰]   |                |                |                       | f <sub>yk</sub> = 235 MPa | f <sub>yk</sub> = 500 MPa |
| 0,25                                        | 10,00 | 0,024          | 0,992          | 1,512                 | 1,5                       | 524                       |
| 0,50                                        | 10,00 | 0,048          | 0,984          | 5,858                 | 5,9                       | 52                        |
| 0,75                                        | 10,00 | 0,070          | 0,977          | 12,78                 | 13,0                      | 8                         |
| 1,00                                        | 10,00 | 0,091          | 0,970          | 22,04                 | 22,7                      |                           |
| 1,25                                        | 10,00 | 0,111          | 0,963          | 33,44                 | 34,7                      | 2                         |
| 1,50                                        | 10,00 | 0,130          | 0,957          | 46,79                 | 48,9                      | 91                        |
| 1,75                                        | 10,00 | 0,149          | 0,950          | 61,92                 | 65,1                      | 6                         |
| 2,00                                        | 10,00 | 0,167          | 0,944          | 78,70                 | 83,3                      | 33                        |
| 2,25                                        | 10,00 | 0,184          | 0,938          | 95,72                 | 102,0                     | )                         |
| 2,50                                        | 10,00 | 0,200          | 0,931          | 111,7                 | 120,0                     |                           |
| 2,75                                        | 10,00 | 0,216          | 0,924          | 126,8                 | 137,3                     |                           |
| 3,00                                        | 10,00 | 0,231          | 0,917          | 141,0                 | 153,8                     |                           |
| 3,00                                        | 9,75  | 0,235          | 0,915          | 143,5                 | 156,9                     | )                         |
| 3,00                                        | 9,50  | 0,240          | 0,913          | 146,1                 | 160,0                     |                           |
| 3,00                                        | 9,25  | 0,245          | 0,912          | 148,8                 | 163,3                     |                           |
| 3,00                                        | 9,00  | 0,250          | 0,910          | 151,6                 | 166,7                     |                           |
| 3,00                                        | 8,75  | 0,255          | 0,908          | 154,5                 | 170,2                     |                           |
| 3,00                                        | 8,50  | 0,261          | 0,906          | 157,5                 | 173,9                     |                           |
| 3,00                                        | 8,25  | 0,267          | 0,904          | 160,7                 | 177,8                     |                           |
| 3,00                                        | 8,00  | 0,273          | 0,902          | 163,9                 | 181,8                     |                           |
| 3,00                                        | 7,75  | 0,279          | 0,899          | 167,3                 | 186,0                     |                           |
| 3,00                                        | 7,50  | 0,286          | 0,897          | 170,8                 | 190,5                     |                           |
| 3,00                                        | 7,25  | 0,293          | 0,894          | 174,5                 | 195,1                     |                           |
| 3,00                                        | 7,00  | 0,300          | 0,892          | 178,3                 | 200,0                     |                           |
| 3,00                                        | 6,75  | 0,308          | 0,889          | 182,3                 | 205,1                     |                           |
| 3,00                                        | 6,50  | 0,316          | 0,886          | 186,5                 | 210,5                     |                           |
| 3,00                                        | 6,25  | 0,324          | 0,883          | 190,9                 | 216,2                     |                           |
| 3,00                                        | 6,00  | 0,333          | 0,880          | 195,5                 | 222,2                     |                           |
| 3,00                                        | 5,75  | 0,343          | 0,876          | 200,3                 | 228,6                     |                           |
| 3,00                                        | 5,50  | 0,353          | 0,873          | 205,3                 | 235,3                     |                           |
| 3,00                                        | 5,25  | 0,364          | 0,869          | 210,6                 | 242,4                     |                           |
| 3,00                                        | 5,00  | 0,375          | 0,865          | 216,1                 | 250,0                     |                           |
| 3,00                                        | 4,75  | 0,387          | 0,860          | 222,0                 | 258,1                     |                           |
| 3,00                                        | 4,50  | 0,400          | 0,856          | 228,1                 | 266,7                     |                           |
| 3,00                                        | 4,25  | 0,414          | 0,851          | 234,6                 | 275,9                     |                           |
| 3,00                                        | 4,00  | 0,429          | 0,845          | 241,5                 | 285,7                     |                           |
| 3,00                                        | 3,75  | 0,444          | 0,840          | 248,7                 | 296,3                     |                           |
| 3,00                                        | 3,50  | 0,462          | 0,833          | 256,4                 | 307,7                     |                           |
| 3,00                                        | 3,25  | 0,480          | 0,827          | 264,5                 | 320,0                     |                           |
| 3,00                                        | 3,00  | 0,500          | 0,819          | 273,1                 | 333,3                     |                           |
| 3,00                                        | 2,75  | 0,522          | 0,812          | 282,3                 | 347,8                     |                           |
| 3,00                                        | 2,50  | 0,545          | 0,803          | 292,0                 | 363,6                     |                           |
| 3,00                                        | 2,25  | 0,571          | 0,794          | 302,3                 | 381,0                     |                           |
| 3,00                                        | 2,00  | 0,600          | 0,783          | 313,3                 | 400,0 434,8               |                           |
| 3,00                                        | 1,75  | 0,632          | 0,772          | 325,0                 | 400,0 434,8 421,1 523,0   |                           |
| 3,00                                        | 1,50  | 0,667          | 0,759          | 337,4                 | 444,4                     | 644,1                     |
| 3,00                                        | 1,25  | 0,706          | 0,735          | 350,6                 | 470,6                     | 818,4                     |
| 3,00                                        | 1,00  | 0,750          | 0,745          | 364,6                 | 510,9 1.087,0             |                           |
| 0,00                                        | 1,00  | 0,700          | 0,120          | ,0                    | 010,9                     | 1.007,0                   |